THE DIAMETRAL DIMENSION OF THE SPACES OF WHITNEY JETS ON SEQUENCES OF POINTS

A. P. Goncharov and M. Zeki

UDC 517.98

Abstract

We calculate the diametral dimension of the spaces of Whitney jets on convergent sequences of points.

Keywords: diametral dimension, Whitney function

1. Introduction

We consider the linear topological structure of the spaces of traces of C^{∞}-functions on convergent sequences of points. We calculate the diametral dimension of these spaces and present a continuum of pairwise nonisomorphic spaces in the case of the so-called sparse sequences. The diametral dimension of the spaces of Whitney jets defined on thick sequences (under some condition of regularity) is the same as for the space s of rapidly decreasing sequences.

Our interest to the spaces of Whitney jets on compact sets of such a kind has arisen because of the following reasons: On the one hand, there is still no concrete example of a nuclear Fréchet function space without topological basis. The space of real analytic functions has no basis as it was proved in [1], but this space is not metrizable. The method to construct a basis for the space of Whitney functions on a convergent sequence of intervals [2] or on a sharp cusp [3] cannot be applied in our case. On the other hand, the problem of primariness is open for the spaces under examination. (The space X is primary if whenever $X=Y \bigoplus Z$ then either Y or Z is isomorphic to X.) Our spaces in a sense occupy an intermediate place between the nonprimary nuclear Fréchet spaces with continuous norm (see [4]) and the prime space $\omega=\mathbb{R}^{\mathbb{N}}$.

It should be noted that diametral dimension cannot be applied to distinguishing the spaces of Whitney jets on compact sets with nonempty interior. In fact, these spaces contain a subspace that is isomorphic to s, and so their diametral dimension is not larger than the diametral dimension of s [5, Proposition 7]. However, Mityagin showed [5] that the space s has minimal diametral dimension in the class of nuclear Fréchet spaces.

Calculation of the diametral dimension of the spaces of Whitney functions on Cantor-type sets is given in [6].

2. Preliminaries

Given a compact subset K of the real axis, let $\mathscr{E}(K)$ denote the space of all sequences $\left(f^{(j)}(x)\right)_{j=0}^{\infty}$, $x \in K$, such that there exists an extension $F \in C^{\infty}(\mathbb{R})$ with $F^{(j)}(x)=f^{(j)}(x)$ for $j \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}$ and $x \in K$. The space $\mathscr{E}(K)$ can be identified with the quotient space $C^{\infty}(I) / Z$ where I is an interval containing K (let $I=[0,1]$) and $Z=\left\{F \in C^{\infty}(I):\left.F^{(j)}\right|_{K} \equiv 0, j \in \mathbb{N}_{0}\right\}$. By the Whitney Theorem [7] the quotient topology can be given by the seminorms

$$
\|f\|_{p}=|f|_{p}+\sup \left\{\left|\left(R_{y}^{p} f\right)^{(i)}(x)\right| \cdot|x-y|^{i-p}: x, y \in K, x \neq y, 0 \leq i \leq p\right\}
$$

where $|f|_{p}=\sup \left\{\left|f^{(i)}(x)\right|: x \in K, 0 \leq i \leq p\right\}$ and $R_{y}^{p} f(x)=f(x)-\sum_{k=0}^{p} f^{(k)}(y) \frac{(x-y)^{k}}{k!}$ is the p th Taylor remainder, $p \in \mathbb{N}_{0}$.

Put $U_{p}=\left\{f \in \mathscr{E}(K):\|f\|_{p} \leq 1\right\}$.

[^0] 2005. Original article submitted August 18, 2003.

A Fréchet space X is said to have a continuous norm, if one of the seminorms of X is a norm. Similarly, X has no continuous norm if its every neighborhood contains a straigh line.

For each sequence $\left(b_{k}\right)_{0}^{\infty}$ there exists a function $F \in C^{\infty}(\mathbb{R})$ such that $F^{(k)}(0)=b_{k}, k \in \mathbb{N}_{0}$ (the Borel problem). Thus, $\mathscr{E}(\{a\})$ is isomorphic to ω for every singleton $\{a\}$.

A compact set $K \subset \mathbb{R}^{m}$ is C^{∞}-determining if for every C^{∞}-extendable function f on K with $\left.f\right|_{K}=0$ we have $\left.f^{(j)}\right|_{K}=0 \forall j \in \mathbb{N}_{0}^{m}$.

In the one-dimensional case we trivially obtain
Proposition 1. For a compact set K on the real axis the following are equivalent:
(i) K is perfect,
(ii) K is C^{∞}-determining,
(iii) $\mathscr{E}(K)$ has a continuous norm,
(iv) $\mathscr{E}(K)$ has no complemented subspace isomorphic to ω.

We restrict exposition to the following model case of compact sets

$$
K=\{0\} \cup \bigcup_{n=1}^{\infty}\left\{a_{n}\right\} \text { with } a_{n} \searrow 0
$$

The nth Kolmogorov width of U_{q} with respect to U_{p} (see [8]) can be given as

$$
d_{n}\left(U_{q}, U_{p}\right)=\inf _{L \in \mathscr{L}_{n}} \inf \left\{\delta: U_{q} \subset \delta U_{p}+L\right\}
$$

where the infimum is taken over all n-dimensional subspaces of $\mathscr{E}(K), n \in \mathbb{N}_{0}$. The diametral dimension of $X=\mathscr{E}(K)$ is defined as follows (see [9] and [5]):

$$
\Gamma(X)=\left\{\gamma=\left(\gamma_{n}\right): \forall p \exists q: \gamma_{n} \cdot d_{n}\left(U_{q}, U_{p}\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

We consider the counting function corresponding to the diametral dimension

$$
\beta(t)=\beta\left(t, U_{p}, U_{q}\right):=\min \left\{\operatorname{dim} L: t U_{q} \subset U_{p}+L\right\}, \quad t>0
$$

It can be showed that $\beta(t)=\left|\left\{n: d_{n}\left(U_{q}, U_{p}\right)>\frac{1}{t}\right\}\right|$ where $|A|$ denotes the cardinality of A.
Since $\mathscr{E}(K)$ is a Schwartz space; therefore, $\beta\left(t, U_{p}, U_{q}\right)$ takes finite values for values of p and q that are sufficiently apart. The following well-known propositions express the direct relation between $\Gamma(X)$ and $\beta(t)$:

Proposition 2. $\left(\gamma_{n}\right) \in \Gamma(X) \Longleftrightarrow \forall p \exists q: \forall C \exists n_{0}: \beta\left(C \gamma_{n}, U_{p}, U_{q}\right) \leq n, n \geq n_{0}$.
Proposition 3. If Fréchet spaces X and Y are isomorphic then

$$
\forall p_{1} \exists p \forall q \exists q_{1}, C: \beta^{(Y)}\left(t, V_{p_{1}}, V_{q_{1}}\right) \leq \beta^{(X)}\left(C t, U_{p}, U_{q}\right), \quad t>0
$$

and vice versa.
Here $\left(U_{p}\right)_{p=1}^{\infty}$ and $\left(V_{p}\right)_{p=1}^{\infty}$ are bases of neighborhoods of X and Y respectively.
In regard to the lower bound for Kolmogorov's widths of locally convex spaces with continuous norm, we can use the following remark of Tikhomirov (see [10] or [5, Proposition 6]).

Proposition 4. Let U be an absolutely convex set in a linear space X and let V be an arbitrary set in X. If $\alpha U \cap L_{n+1} \subset V \cap L_{n+1}$ for some $(n+1)$-dimensional subspace L_{n+1} of X and for $\alpha>0$ then $d_{n}(V, U) \geq \alpha$.

We have to adjust this proposition for spaces without a continuous norm. In fact, if $X=\omega$ with $\|x\|_{p}=\max _{k \leq p}\left|x_{k}\right|, p<q<r$, and $L=\operatorname{span}\left(e_{k}\right)_{k=r}^{r+n}$ then clearly $U_{p} \cap L \subset U_{q} \cap L$, but $d_{n}\left(U_{q}, U_{p}\right)=0$ for $n \geq p$.

This example is explained by impossibility of using the Riesz Theorem (e.g., see [11, p. 84]) in this case which is essential in the proof of Proposition 4.

Let X be a locally convex space. Suppose that U is a neighborhood of zero in X. Let $Z_{U}=\{x \in$ $\left.X:\|x\|_{U}=0\right\}$. Here $\|\cdot\|_{U}$ is the gauge functional of U. Let X_{U} be the completion of X / Z_{U} with respect to the norm $\|\cdot\|_{U}, \pi_{U}: X \rightarrow X_{U}: x \rightarrow\left\{x+Z_{U}\right\}$.

Proposition 5. Given a set V, if $\alpha \pi_{U}(U) \cap M_{n+1} \subset \pi_{U}(V) \cap M_{n+1}$ for some ($n+1$)-dimensional subspace M_{n+1} of X_{U} and for $\alpha>0$ then $d_{n}(V, U) \geq \alpha$.

Proof. Applying Proposition 4 yields $d_{n}^{\left(X_{U}\right)}(\pi(V), \pi(U)) \geq \alpha$. On the other hand, for every linear operator T we have $d_{n}(T V, T U) \leq d_{n}(V, U)$ (e.g., see [5]), which completes the proof.

Corollary 1. $\beta\left(t, U_{p}, U_{q}\right) \geq \sup \left\{\operatorname{dim} M: 2 \pi_{U_{p}}\left(U_{p}\right) \cap M \subset t \pi_{U_{p}}\left(U_{q}\right)\right\}$ where the supremum is taken over all finite dimensional subspaces M of $X_{U_{p}}$.

In fact, let a subspace M with $\operatorname{dim} M=n+1$ satisfy the inclusion of the hypothesis. Then $d_{n}\left(U_{q}, U_{p}\right) \geq \frac{2}{t}$ and, since the sequence $\left(d_{n}\right)$ is nondecreasing,

$$
\beta\left(t, U_{p}, U_{q}\right) \geq\left|\left\{k: d_{k}\left(U_{q}, U_{p}\right) \geq \frac{2}{t}\right\}\right| \geq|\{0,1,2, \ldots, n\}|=\operatorname{dim} M .
$$

The same argument can be repeated for every absolutely convex set U in a linear space X and for V in the linear span of U.

3. The Counting Function $\boldsymbol{\beta}$ in the Case of Sparse Sequences

We say that a sequence $\left(a_{n}\right)$ with $a_{n} \searrow 0$ is sparse if there exists $Q \geq 1$ such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n}-a_{n+1} \geq a_{n}^{Q} \tag{1}
\end{equation*}
$$

Theorem 1. Let $K=\{0\} \cup \bigcup_{n=1}^{\infty}\left\{a_{n}\right\}$ be given by a sparse sequence with the corresponding constant Q. Then for the counting function corresponding to the diametral dimension of $\mathscr{E}(K)$ and for $q>p>0$ with $q-Q p>0$, we have

$$
N_{2} \leq \beta\left(t, U_{p}, U_{q}\right) \leq(q+1) N_{1}, \quad t \geq 4,
$$

with $N_{1}=\min \left\{n: a_{n}^{q-Q p} \leq \frac{1}{8 t}\right\}$ and $N_{2}=\max \left\{n:\left(a_{k}-a_{k+1}\right)^{q-p} \geq \frac{8}{t} \forall k \leq n\right\}$.
Proof. From the definition of β we see that $\beta(t) \leq \operatorname{dim} L$ for every subspace L such that $t U_{q} \subset$ $U_{p}+L$. Let us choose a suitable subspace L. We consider the following functions:

$$
H_{j}(x)= \begin{cases}\frac{x^{j}}{j!} & \text { if } x \in\left[0, a_{N_{1}}\right] \cap K \\ 0 & \text { otherwise on } K\end{cases}
$$

and

$$
h_{n j}(x)= \begin{cases}\frac{\left(x-a_{n}\right)^{j}}{j!} & \text { if } x=a_{n}, \\ 0 & \text { otherwise on } K\end{cases}
$$

and put

$$
L=\operatorname{span}\left\{H_{j} \cup h_{n j}: n=1, \ldots, N_{1}-1 ; j=0, \ldots, q\right\} .
$$

Then $\operatorname{dim} L=N_{1}(q+1)$.
Given $f \in U_{q}$, we take $g \in L$ as follows:

$$
g=\sum_{j=0}^{q} f^{(j)}(0) H_{j}+\sum_{k=1}^{N_{1}-1} \sum_{j=0}^{q} f^{(j)}\left(a_{k}\right) h_{k j} .
$$

We want to show that $\|f-g\|_{p} \leq \frac{1}{t}$.
We see that $|f-g|_{p} \leq \frac{1}{2 t}$. In fact, if $x>a_{N_{1}}$ then $f^{(i)}(x)=g^{(i)}(x), i=0,1, \ldots, p$. In case $x \leq a_{N_{1}}$ we have $f(x)-g(x)=R_{0}^{q} f(x)$ and $\left|R_{0}^{q} f(x)\right|_{p} \leq\|f\|_{q} x^{q-p} \leq a_{N_{1}}^{q-p} \leq \frac{1}{2 t}$ by the choice of N_{1}.

In order to estimate $b_{i p}:=\left|\left(R_{y}^{p}(f-g)\right)^{(i)}(x)\right| \cdot|x-y|^{i-p}$ with $x, y \in K, x \neq y, i=0,1,2, \ldots, p$, we will consider all possible positions of the points x, y on K.

If $x, y>a_{N_{1}}$ then clearly $b_{i p}=0$.
If $x, y \leq a_{N_{1}}$ then $(f-g)(x)=R_{0}^{q} f(x)$. Here

$$
R_{y}^{p}\left(R_{0}^{q} f\right)(x)=R_{y}^{q}\left(R_{0}^{q} f\right)(x)+\sum_{k=p+1}^{q}\left(R_{0}^{q} f\right)^{(k)}(y) \frac{(x-y)^{k}}{k!} .
$$

The first term on the right-hand side is equal to $R_{y}^{q} f(x)$, as is easy to see. Therefore,

$$
\left(R_{y}^{p}(f-g)\right)^{(i)}(x)=\left(R_{y}^{q} f\right)^{(i)}(x)+\sum_{k=p+1}^{q}\left(R_{0}^{q} f\right)^{(k)}(y) \frac{(x-y)^{k-i}}{(k-i)!}
$$

and

$$
b_{i p} \leq\|f\|_{q}|x-y|^{q-p}+\|f\|_{q} \sum_{k=p+1}^{q} \frac{y^{q-k}|x-y|^{k-p}}{(k-i)!} .
$$

Since $f \in U_{q}$ and $y^{q-k}|x-y|^{k-p}<a_{N_{1}}^{q-p}$, we obtain

$$
b_{i p} \leq a_{N_{1}}^{q-p}(1+e) \leq \frac{1}{2 t} .
$$

If $y \leq a_{N_{1}}<x$ then $f^{(i)}(x)-g^{(i)}(x)=0, f^{(k)}(y)-g^{(k)}(y)=\left(R_{0}^{q} f\right)^{(k)}(y)$ for $k=i, i+1, \ldots, p$. Therefore,

$$
R_{y}^{p}(f-g)(x)=-\sum_{k=0}^{p}\left(R_{0}^{q} f\right)^{(k)}(y) \frac{(x-y)^{k}}{k!}
$$

and

$$
b_{i p} \leq\|f\|_{q} \sum_{k=i}^{p} y^{q-k} \frac{(x-y)^{k-p}}{(k-i)!} .
$$

Here $x-y \geq a_{N_{1}}^{Q}$ by (1). Hence by the definition of N_{1} we have

$$
b_{i p} \leq \sum_{k=i}^{p} \frac{a_{N_{1}}^{q-k+Q(k-p)}}{(k-i)!} \leq a_{N_{1}}^{q-Q p} e \leq \frac{1}{2 t} .
$$

The case $x \leq a_{N_{1}}<y$ is similar.
Therefore, $\|f-g\|_{p} \leq \frac{1}{t}, U_{q} \subset \frac{1}{t} U_{p}+L$ and $\beta\left(t, U_{p}, U_{q}\right) \leq(q+1) N_{1}$.
For the lower bound of β we use Corollary 1. In our case $X_{U_{p}}$ is the Banach space $\mathscr{E}^{p}(K)$ of Whitney jets of order p with the norm $\|\cdot\|_{p}$. Put $M=\operatorname{span}\left\{\pi_{U_{p}}\left(h_{n p}\right), n=1,2, \ldots, N_{2}\right\}$. We will show

$$
\begin{equation*}
2 \pi_{U_{p}}\left(U_{p}\right) \cap M \subset t \pi_{U_{p}}\left(U_{q}\right) . \tag{2}
\end{equation*}
$$

Every element F on the left-hand side has the form $F=\pi_{U_{p}}(f)$, where all components of the jet f are zero except possibly $f^{(p)}\left(a_{k}\right)=\alpha_{k}, k=1,2, \ldots, N_{2}$. Since $f \in 2 U_{p}$; therefore, $\left|\alpha_{k}\right| \leq 2$. To prove (2) it suffices to show that $\|f\|_{q} \leq t$. Clearly, $|f|_{q} \leq\left|\alpha_{k}\right| \leq \frac{t}{2}$.

Let us estimate $b_{i q}:=\left|\left(R_{y}^{q} f\right)^{(i)}(x)\right| \cdot|x-y|^{i-q}$ with $x \neq y ; x, y \in K, i \leq q$. All terms of $\left(R_{y}^{q} f\right)^{(i)}(x)$ are zero, except possibly $f^{(p)}(x), f^{(p)}(y)$ if $x, y \geq a_{N_{2}}$. If $i=p$ then $b_{p q}=\left|f^{(p)}(x)-f^{(p)}(y)\right| \cdot|x-y|^{p-q}$. If $i<p$ then $b_{i q}=\left|f^{(p)}(y)\right| \frac{|x-y|^{p-i}}{(p-i)!}|x-y|^{i-q}$.

In both cases $b_{i q} \leq 2|f|_{p}|x-y|^{p-q} \leq 4|x-y|^{p-q}$.
At least one value (x or y) is not smaller than $a_{N_{2}}$ since otherwise the Taylor remainder vanishes.
Therefore, $|x-y| \geq \min _{k \leq N_{2}}\left(a_{k}-a_{k+1}\right) \geq\left(\frac{8}{t}\right)^{\frac{1}{q-p}}$ by the definition of N_{2}. This gives $b_{i q} \leq \frac{t}{2}$ and (2). Thus $\beta(t) \geq \operatorname{dim} M=N_{2}$.

4. A Geometric Condition

Our next goal is to give a necessary condition for the isomorphism $\mathscr{E}\left(K_{a}\right) \simeq \mathscr{E}\left(K_{b}\right)$ in terms of the properties of the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sparse sequence such that $a_{n}=\varphi(n)$ for a differentiable monotone function $\varphi: \mathbb{R}_{+} \rightarrow(0,1]$. To simplify the evaluation of N_{2} we suppose that φ is convex. We denote the function inverse to φ by Φ and let Φ_{1} stand for the inverse to $-\varphi^{\prime}$. Let the functions $\psi, \Psi=\psi_{-1}$, and $\Psi_{1}=\left(-\psi^{\prime}\right)_{-1}$ correspond to a sparse sequence $\left(b_{n}\right)$. We say that the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are equivalent if, for each q, we can find ε, C, and x_{0} such that for $x>x_{0}$

$$
\begin{equation*}
-\psi^{\prime}(2 q x) \leq C \varphi^{\varepsilon}(x) \tag{3}
\end{equation*}
$$

and the analogous condition holds on interchanging φ and ψ.
We write β_{a} and β_{b} for the counting functions corresponding to $\mathscr{E}\left(K_{a}\right)$ and $\mathscr{E}\left(K_{b}\right)$.
Given $p<q$ and large t, put $\rho=\left(\frac{8}{t}\right)^{\frac{1}{q-p}}$. By the definition of N_{2} we see $a_{N_{2}+1}-a_{N_{2}+2}<\rho \leq$ $a_{N_{2}}-a_{N_{2}+1}$. By the Mean Value Theorem, $-\varphi^{\prime}(\xi)<\rho$ with $N_{2}+1<\xi<N_{2}+2$. Therefore, $-\varphi^{\prime}\left(N_{2}+2\right)<\rho$ and $N_{2}+2>\Phi_{1}(\rho)$. Theorem 1 shows now that $\Phi_{1}(\rho)-2<\beta_{a}\left(t, U_{p}, U_{q}\right)$. In the same manner for $\rho_{1}=(8 t)^{-\frac{1}{q-Q p}}$ we find that

$$
\begin{equation*}
\beta_{a}\left(t, U_{p}, U_{q}\right)<(q+1)\left[\Phi\left(\rho_{1}\right)+1\right] . \tag{4}
\end{equation*}
$$

Applying Proposition 3, we deduce that the isomorphism $\mathscr{E}\left(K_{a}\right) \simeq \mathscr{E}\left(K_{b}\right)$ implies

$$
\forall p_{1} \exists p \forall q \exists q_{1} \exists C, t_{0}: \Psi_{1}\left((8 / t)^{\frac{1}{q_{1}-p_{1}}}\right)<(q+1) \Phi\left((C t)^{\frac{-1}{q-Q_{p}}}\right)+q+3, \quad t>t_{0} .
$$

The right-hand side of the inequality can be replaced by $2 q \Phi(\cdot)$ as $\Phi \uparrow \infty$ when its argument goes to 0 . We now denote $\frac{1}{2 q} \Psi_{1}\left((8 / t)^{\frac{1}{q_{1}-p_{1}}}\right)$ by x.

Then $8 / t=\left(-\psi^{\prime}(2 q x)\right)^{q_{1}-p_{1}}$ and $x<\Phi\left(\frac{1}{C}\left(-\psi^{\prime}(2 q x)\right)^{M}\right)$ with $M=\frac{q_{1}-p_{1}}{q-Q p}$ and some constant C. This clearly implies (3).

We have thus proved the following necessary geometric condition of isomorphism:
Theorem 2. If the spaces $\mathscr{E}\left(K_{a}\right)$ and $\mathscr{E}\left(K_{b}\right)$ are isomorphic then the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are equivalent.

Question. Is the equivalence of sparse sequences, provided all regularity properties, a sufficient condition for isomorphism between the corresponding spaces as well?

5. Examples of Nonisomorphic Spaces

We may now apply Proposition 2 in order to describe the diametral dimension $\Gamma\left(\mathscr{E}\left(K_{a}\right)\right)$ for the compact set K_{a} satisfying all conditions of the previous section.

Proposition 6. $\left\{\left(\gamma_{n}\right): \forall p \exists q: \gamma_{n} \varphi^{q-Q p}\left(\frac{n}{2 q}\right) \rightarrow 0\right.$ as $\left.n \uparrow \infty\right\} \subset \Gamma\left(\mathscr{E}\left(K_{a}\right)\right) \subset\left\{\left(\gamma_{n}\right): \forall p \exists q:\right.$ $\gamma_{n}\left(-\varphi^{\prime}(n+2)\right)^{q-p} \rightarrow 0$ as $\left.n \uparrow \infty\right\}$.

Let us prove the first inclusion since the arguments are the same for the latter. If $\forall p \exists q: \forall C \exists n_{0}$: $C \gamma_{n} \varphi^{q-Q p}\left(\frac{n}{2 q}\right)<1, n \geq n_{0}$, then $\frac{n}{2 q}>\Phi\left(\left(C \gamma_{n}\right)^{-\frac{1}{q-Q p}}\right)$ and $n>(q+1)\left[\Phi\left(\left(C \gamma_{n}\right)^{-\frac{1}{q-Q_{p}}}\right)+1\right]>$ $\beta\left(\frac{C \gamma_{n}}{8}, U_{p}, U_{q}\right)$, by (4). Therefore, by Proposition $2,\left(\gamma_{n}\right) \in \Gamma\left(\mathscr{E}\left(K_{a}\right)\right)$.

The condition (1) has the form

$$
\exists Q \geq 1, t_{0}: \varphi^{Q}(t) \leq-\varphi^{\prime}(t), \quad t>t_{0}
$$

If, in addition, the function φ satisfies the following restriction

$$
\exists C \geq 1, t_{1}: \varphi^{C}(t) \leq \varphi(2 t), \quad t>t_{1}
$$

then, as it is easy to check,

$$
\Gamma\left(\mathscr{E}\left(K_{a}\right)\right)=\left\{\left(\gamma_{n}\right): \exists M: \gamma_{n} \cdot \varphi^{M}(n) \rightarrow 0 \text { as } n \uparrow \infty\right\} .
$$

Therefore, the space of Whitney jets on the sequence $\left(n^{-1}\right)$ has the same diametral dimension as the space s of rapidly decreasing sequences, whereas in the case $a_{n}=e^{-n}$ we obtain the class Γ likewise in the case of the space of entire functions.

We can now present the example of continuum-many pairwise nonisomorphic spaces $\mathscr{E}\left(K_{a_{\lambda}}\right)$. The family of functions $\varphi_{\lambda}(t)=\exp \left(-\ln ^{\lambda}(t)\right), t \geq 1$, with the parameter $\lambda \geq 1$ (cp. [12]) gives the desired example. Indeed, the corresponding sequence is sparse, the function φ_{λ} satisfies all required conditions, and the classes $\Gamma\left(\mathscr{E}\left(K_{a_{\lambda}}\right)\right)$ are different for distinct values of the parameter.

6. The Case of Thick Sequences

From the family of nonsparse sequences we distinguish the sequences (we call them thick) such that for every Q and large enough n we have

$$
a_{n}-a_{n+1} \leq a_{n}^{Q} .
$$

We assume the additional condition

$$
\begin{equation*}
\exists M, n_{1}: a_{n}-a_{n+1}>1 / n^{M} \text { for } n>n_{1} \tag{5}
\end{equation*}
$$

which is satisfied for typical thick sequences.
Given Fréchet spaces X and Y, we say that the functions $\beta^{(X)}$ and $\beta^{(Y)}$ have the same asymptotic behavior $\left(\beta^{(X)} \sim \beta^{(Y)}\right)$ if we can estimate one function by the other with the appropriate arrangement of the quantifiers as in Proposition 3.

Theorem 3. Let a thick convex sequence $a=\left(a_{n}\right)$ satisfy (5) and $X=\mathscr{E}\left(K_{a}\right)$. Then $\beta^{(X)} \sim \beta^{(s)}$.
Proof. For the space s we have $d_{n}\left(U_{q}, U_{p}\right)=(n+1)^{p-q}$ (e.g., see [13, Lemma 2]) and $\beta^{(s)}\left(t, V_{p}, V_{q}\right) \sim$ $t^{\frac{1}{q-p}}$. Since $\beta^{(s)}$ is maximal among all nuclear Fréchet spaces, we naturally obtain the upper bound for $\beta^{(X)}$:

$$
\forall p \forall \varepsilon \exists q \exists C: \beta^{(X)}\left(t, U_{p}, U_{q}\right)<C \cdot t^{\varepsilon} .
$$

On the other hand, arguing as in Theorem 1, we infer the bound

$$
\beta^{(X)}\left(t, U_{p}, U_{q}\right) \geq N_{2}
$$

with the same value N_{2} as above. By convexity of the sequence $\left(a_{n}\right)$ we have $a_{N_{2}+1}-a_{N_{2}+2}<\left(\frac{8}{t}\right)^{\frac{1}{q-p}}$. Applying (5) gives

$$
a_{N_{2}+1}-a_{N_{2}+2}>\left(2 N_{2}\right)^{-M} .
$$

Therefore,

$$
N_{2}>C t^{\frac{1}{M(q-p)}}
$$

for some constant C, which implies the desired conclusion.
The condition (5) does not follow from the definition of a thick sequence. For example, we can recurrently construct the sequence of subscripts $\left(n_{k}\right)$ such that $a_{n_{k}}=\frac{1}{\log n_{k}}$ and $a_{n}-a_{n+1}=n_{k}^{-k}$ for $n_{k} \leq n<n_{k+1}$. We guess that the behavior of β for the corresponding space $\mathscr{E}\left(K_{a}\right)$ is highly irregular.

References

1. Domanski P. and Vogt D., "The space of real-analytic functions has no basis," Studia Math., 142, No. 2, 187-200 (2000).
2. Goncharov A. P., "Spaces of Whitney functions with basis," Math. Nachr., 220, 45-57 (2000).
3. Goncharov A. P. and Zahariuta V. P., "Basis in the space of C^{∞}-functions on a graduated sharp cusp," J. Geom. Anal., 13, No. 1, 95-106 (2003).
4. Diaz J. C., "On non-primary Fréchet Schwartz spaces," Studia Math., 126, No. 3, 291-307 (1998).
5. Mityagin B. S., "Approximative dimension and bases for nuclear spaces," Uspekhi Mat. Nauk, 16, No. 4, 63-132 (1961).
6. Arslan B., Goncharov A., and Kocatepe M., "Spaces of Whitney functions on Cantor-type sets," Canad. J. Math., 54, 225-238 (2002).
7. Whitney H., "Differentiable functions defined in closed sets," Trans. Amer. Math. Soc., 36, 369-387 (1934).
8. Kolmogorov A. N., "On linear dimension of topological vector spaces," Dokl. Akad. Nauk SSSR, 120, No. 2, 239-241 (1958).
9. Bessaga C., Pelczynski A., and Rolewicz S., "On diametral approximative dimension and linear homogeneity of F-spaces," Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 9, 667-683 (1961).
10. Tikhomirov V. M., "On the n-dimensional widths of compact sets," Dokl. Akad. Nauk SSSR, 130, No. 4, 734-737 (1960).
11. Yosida K., Functional Analysis, Springer-Verlag, Berlin (1978).
12. Goncharov A. and Kocatepe M., "A continuum of pairwise non-isomorphic spaces of Whitney functions on Cantor-type sets," in: Linear Topological Spaces and Complex Analysis, 1997, 3, pp. 57-64.
13. Dragilev M. M., "On regular bases for nuclear spaces," Mat. Sb., 68, No. 2, 153-173 (1965).

[^0]: Ankara; Columbus. Translated from Sibirski冗 Matematicheski冗 Zhurnal, Vol. 46, No. 2, pp. 352-360, March-April,

