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THE DIAMETRAL DIMENSION OF THE SPACES
OF WHITNEY JETS ON SEQUENCES OF POINTS
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Abstract: We calculate the diametral dimension of the spaces of Whitney jets on convergent sequences
of points.
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1. Introduction

We consider the linear topological structure of the spaces of traces of C∞-functions on convergent
sequences of points. We calculate the diametral dimension of these spaces and present a continuum of
pairwise nonisomorphic spaces in the case of the so-called sparse sequences. The diametral dimension of
the spaces of Whitney jets defined on thick sequences (under some condition of regularity) is the same
as for the space s of rapidly decreasing sequences.

Our interest to the spaces of Whitney jets on compact sets of such a kind has arisen because of
the following reasons: On the one hand, there is still no concrete example of a nuclear Fréchet function
space without topological basis. The space of real analytic functions has no basis as it was proved in [1],
but this space is not metrizable. The method to construct a basis for the space of Whitney functions
on a convergent sequence of intervals [2] or on a sharp cusp [3] cannot be applied in our case. On the
other hand, the problem of primariness is open for the spaces under examination. (The space X is
primary if whenever X = Y

⊕
Z then either Y or Z is isomorphic to X.) Our spaces in a sense occupy

an intermediate place between the nonprimary nuclear Fréchet spaces with continuous norm (see [4]) and
the prime space ω = RN.

It should be noted that diametral dimension cannot be applied to distinguishing the spaces of Whitney
jets on compact sets with nonempty interior. In fact, these spaces contain a subspace that is isomorphic
to s, and so their diametral dimension is not larger than the diametral dimension of s [5, Proposition 7].
However, Mityagin showed [5] that the space s has minimal diametral dimension in the class of nuclear
Fréchet spaces.

Calculation of the diametral dimension of the spaces of Whitney functions on Cantor-type sets is
given in [6].

2. Preliminaries

Given a compact subset K of the real axis, let E (K) denote the space of all sequences (f (j)(x))∞j=0,
x ∈ K, such that there exists an extension F ∈ C∞(R) with F (j)(x) = f (j)(x) for j ∈ N0 := {0, 1, 2, . . . }
and x ∈ K. The space E (K) can be identified with the quotient space C∞(I)/Z where I is an interval
containing K (let I = [0, 1]) and Z = {F ∈ C∞(I) : F (j)|K ≡ 0, j ∈ N0}. By the Whitney Theorem [7]
the quotient topology can be given by the seminorms

‖f‖p = |f |p + sup
{∣∣(Rp

yf
)(i)(x)

∣∣ · |x− y|i−p : x, y ∈ K, x 6= y, 0 ≤ i ≤ p
}
,

where |f |p = sup{|f (i)(x)| : x ∈ K, 0 ≤ i ≤ p
}

and Rp
yf(x) = f(x)−

∑p
k=0 f

(k)(y) (x−y)k

k! is the pth Taylor
remainder, p ∈ N0.

Put Up = {f ∈ E (K) : ‖f‖p ≤ 1}.
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A Fréchet space X is said to have a continuous norm, if one of the seminorms of X is a norm.
Similarly, X has no continuous norm if its every neighborhood contains a straigh line.

For each sequence (bk)∞0 there exists a function F ∈ C∞(R) such that F (k)(0) = bk, k ∈ N0 (the Borel
problem). Thus, E ({a}) is isomorphic to ω for every singleton {a}.

A compact set K ⊂ Rm is C∞-determining if for every C∞-extendable function f on K with f |K = 0
we have f (j)|K = 0 ∀j ∈ Nm

0 .
In the one-dimensional case we trivially obtain

Proposition 1. For a compact set K on the real axis the following are equivalent:
(i) K is perfect,
(ii) K is C∞-determining,
(iii) E (K) has a continuous norm,
(iv) E (K) has no complemented subspace isomorphic to ω.

We restrict exposition to the following model case of compact sets

K = {0} ∪
∞⋃

n=1

{an} with an ↘ 0.

The nth Kolmogorov width of Uq with respect to Up (see [8]) can be given as

dn(Uq, Up) = inf
L∈Ln

inf{δ : Uq ⊂ δUp + L}

where the infimum is taken over all n-dimensional subspaces of E (K), n ∈ N0. The diametral dimension
of X = E (K) is defined as follows (see [9] and [5]):

Γ(X) = {γ = (γn) : ∀p∃q : γn · dn(Uq, Up) → 0 as n→∞}.
We consider the counting function corresponding to the diametral dimension

β(t) = β(t, Up, Uq) := min{dimL : tUq ⊂ Up + L}, t > 0.

It can be showed that β(t) =
∣∣{n : dn(Uq, Up) > 1

t

}∣∣ where |A| denotes the cardinality of A.
Since E (K) is a Schwartz space; therefore, β(t, Up, Uq) takes finite values for values of p and q that

are sufficiently apart. The following well-known propositions express the direct relation between Γ(X)
and β(t):

Proposition 2. (γn) ∈ Γ(X) ⇐⇒ ∀p ∃q : ∀C ∃n0 : β(Cγn, Up, Uq) ≤ n, n ≥ n0.

Proposition 3. If Fréchet spaces X and Y are isomorphic then

∀p1 ∃p ∀q ∃q1, C : β(Y )(t, Vp1 , Vq1) ≤ β(X)(Ct, Up, Uq), t > 0,

and vice versa.

Here (Up)∞p=1 and (Vp)∞p=1 are bases of neighborhoods of X and Y respectively.
In regard to the lower bound for Kolmogorov’s widths of locally convex spaces with continuous norm,

we can use the following remark of Tikhomirov (see [10] or [5, Proposition 6]).

Proposition 4. Let U be an absolutely convex set in a linear space X and let V be an arbitrary
set in X. If αU ∩Ln+1 ⊂ V ∩Ln+1 for some (n+ 1)-dimensional subspace Ln+1 of X and for α > 0 then
dn(V,U) ≥ α.

We have to adjust this proposition for spaces without a continuous norm. In fact, if X = ω with
‖x‖p = maxk≤p |xk|, p < q < r, and L = span(ek)r+n

k=r then clearly Up ∩ L ⊂ Uq ∩ L, but dn(Uq, Up) = 0
for n ≥ p.

This example is explained by impossibility of using the Riesz Theorem (e.g., see [11, p. 84]) in this
case which is essential in the proof of Proposition 4.

Let X be a locally convex space. Suppose that U is a neighborhood of zero in X. Let ZU = {x ∈
X : ‖x‖U = 0}. Here ‖ · ‖U is the gauge functional of U . Let XU be the completion of X/ZU with respect
to the norm ‖ · ‖U , πU : X → XU : x→ {x+ ZU}.
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Proposition 5. Given a set V , if απU (U) ∩Mn+1 ⊂ πU (V ) ∩Mn+1 for some (n + 1)-dimensional
subspace Mn+1 of XU and for α > 0 then dn(V,U) ≥ α.

Proof. Applying Proposition 4 yields d(XU )
n (π(V ), π(U)) ≥ α. On the other hand, for every linear

operator T we have dn(TV, TU) ≤ dn(V,U) (e.g., see [5]), which completes the proof.

Corollary 1. β(t, Up, Uq) ≥ sup{dimM : 2πUp(Up) ∩M ⊂ tπUp(Uq)} where the supremum is taken
over all finite dimensional subspaces M of XUp .

In fact, let a subspace M with dimM = n + 1 satisfy the inclusion of the hypothesis. Then
dn(Uq, Up) ≥ 2

t and, since the sequence (dn) is nondecreasing,

β(t, Up, Uq) ≥
∣∣∣∣{k : dk(Uq, Up) ≥

2
t

}∣∣∣∣ ≥ |{0, 1, 2, . . . , n}| = dimM.

The same argument can be repeated for every absolutely convex set U in a linear space X and for V
in the linear span of U .

3. The Counting Function β in the Case of Sparse Sequences

We say that a sequence (an) with an ↘ 0 is sparse if there exists Q ≥ 1 such that for all n ∈ N

an − an+1 ≥ aQ
n . (1)

Theorem 1. Let K = {0} ∪
⋃∞

n=1{an} be given by a sparse sequence with the corresponding
constant Q. Then for the counting function corresponding to the diametral dimension of E (K) and for
q > p > 0 with q −Qp > 0, we have

N2 ≤ β(t, Up, Uq) ≤ (q + 1)N1, t ≥ 4,

with N1 = min
{
n : aq−Qp

n ≤ 1
8t

}
and N2 = max

{
n : (ak − ak+1)q−p ≥ 8

t ∀k ≤ n
}
.

Proof. From the definition of β we see that β(t) ≤ dimL for every subspace L such that tUq ⊂
Up + L. Let us choose a suitable subspace L. We consider the following functions:

Hj(x) =
{ xj

j! if x ∈ [0, aN1 ] ∩K,
0 otherwise on K

and

hnj(x) =

{
(x−an)j

j! if x = an,

0 otherwise on K

and put
L = span{Hj ∪ hnj : n = 1, . . . , N1 − 1; j = 0, . . . , q}.

Then dimL = N1(q + 1).
Given f ∈ Uq, we take g ∈ L as follows:

g =
q∑

j=0

f (j)(0)Hj +
N1−1∑
k=1

q∑
j=0

f (j)(ak)hkj .

We want to show that ‖f − g‖p ≤ 1
t .

We see that |f − g|p ≤ 1
2t . In fact, if x > aN1 then f (i)(x) = g(i)(x), i = 0, 1, . . . , p. In case x ≤ aN1

we have f(x)− g(x) = Rq
0f(x) and

∣∣Rq
0f(x)

∣∣
p
≤ ‖f‖qx

q−p ≤ aq−p
N1

≤ 1
2t by the choice of N1.

In order to estimate bip :=
∣∣(Rp

y(f − g)
)(i)(x)

∣∣ · |x− y|i−p with x, y ∈ K, x 6= y, i = 0, 1, 2, . . . , p, we
will consider all possible positions of the points x, y on K.
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If x, y > aN1 then clearly bip = 0.
If x, y ≤ aN1 then (f − g)(x) = Rq

0f(x). Here

Rp
y

(
Rq

0f
)
(x) = Rq

y

(
Rq

0f
)
(x) +

q∑
k=p+1

(
Rq

0f
)(k)(y)

(x− y)k

k!
.

The first term on the right-hand side is equal to Rq
yf(x), as is easy to see. Therefore,

(
Rp

y(f − g)
)(i)(x) =

(
Rq

yf
)(i)(x) +

q∑
k=p+1

(
Rq

0f
)(k)(y)

(x− y)k−i

(k − i)!

and

bip ≤ ‖f‖q|x− y|q−p + ‖f‖q

q∑
k=p+1

yq−k|x− y|k−p

(k − i)!
.

Since f ∈ Uq and yq−k|x− y|k−p < aq−p
N1

, we obtain

bip ≤ aq−p
N1

(1 + e) ≤ 1
2t
.

If y ≤ aN1 < x then f (i)(x) − g(i)(x) = 0, f (k)(y) − g(k)(y) =
(
Rq

0f
)(k)(y) for k = i, i + 1, . . . , p.

Therefore,

Rp
y(f − g)(x) = −

p∑
k=0

(
Rq

0f
)(k)(y)

(x− y)k

k!

and

bip ≤ ‖f‖q

p∑
k=i

yq−k (x− y)k−p

(k − i)!
.

Here x− y ≥ aQ
N1

by (1). Hence by the definition of N1 we have

bip ≤
p∑

k=i

a
q−k+Q(k−p)
N1

(k − i)!
≤ aq−Qp

N1
e ≤ 1

2t
.

The case x ≤ aN1 < y is similar.
Therefore, ‖f − g‖p ≤ 1

t , Uq ⊂ 1
tUp + L and β(t, Up, Uq) ≤ (q + 1)N1.

For the lower bound of β we use Corollary 1. In our case XUp is the Banach space E p(K) of Whitney
jets of order p with the norm ‖ · ‖p. Put M = span{πUp(hnp), n = 1, 2, . . . , N2}. We will show

2πUp(Up) ∩M ⊂ tπUp(Uq). (2)

Every element F on the left-hand side has the form F = πUp(f), where all components of the jet f
are zero except possibly f (p)(ak) = αk, k = 1, 2, . . . , N2. Since f ∈ 2Up; therefore, |αk| ≤ 2. To prove (2)
it suffices to show that ‖f‖q ≤ t. Clearly, |f |q ≤ |αk| ≤ t

2 .

Let us estimate biq :=
∣∣(Rq

yf
)(i)(x)

∣∣ · |x− y|i−q with x 6= y;x, y ∈ K, i ≤ q. All terms of
(
Rq

yf
)(i)(x)

are zero, except possibly f (p)(x), f (p)(y) if x, y ≥ aN2 . If i = p then bpq = |f (p)(x)− f (p)(y)| · |x− y|p−q.
If i < p then biq = |f (p)(y)| |x−y|p−i

(p−i)! |x− y|i−q.
In both cases biq ≤ 2|f |p|x− y|p−q ≤ 4|x− y|p−q.
At least one value (x or y) is not smaller than aN2 since otherwise the Taylor remainder vanishes.
Therefore, |x−y| ≥ mink≤N2(ak−ak+1) ≥ (8

t )
1

q−p by the definition of N2. This gives biq ≤ t
2 and (2).

Thus β(t) ≥ dimM = N2.
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4. A Geometric Condition

Our next goal is to give a necessary condition for the isomorphism E (Ka) ' E (Kb) in terms of
the properties of the sequences (an) and (bn). Let (an)∞n=1 be a sparse sequence such that an = ϕ(n)
for a differentiable monotone function ϕ : R+ → (0, 1]. To simplify the evaluation of N2 we suppose
that ϕ is convex. We denote the function inverse to ϕ by Φ and let Φ1 stand for the inverse to −ϕ′. Let
the functions ψ, Ψ = ψ−1, and Ψ1 = (−ψ′)−1 correspond to a sparse sequence (bn). We say that the
sequences (an) and (bn) are equivalent if, for each q, we can find ε, C, and x0 such that for x > x0

−ψ′(2qx) ≤ Cϕε(x) (3)

and the analogous condition holds on interchanging ϕ and ψ.
We write βa and βb for the counting functions corresponding to E (Ka) and E (Kb).
Given p < q and large t, put ρ = (8

t )
1

q−p . By the definition of N2 we see aN2+1 − aN2+2 < ρ ≤
aN2 − aN2+1. By the Mean Value Theorem, −ϕ′(ξ) < ρ with N2 + 1 < ξ < N2 + 2. Therefore,
−ϕ′(N2 + 2) < ρ and N2 + 2 > Φ1(ρ). Theorem 1 shows now that Φ1(ρ)− 2 < βa(t, Up, Uq). In the same

manner for ρ1 = (8t)−
1

q−Qp we find that

βa(t, Up, Uq) < (q + 1)[Φ(ρ1) + 1]. (4)

Applying Proposition 3, we deduce that the isomorphism E (Ka) ' E (Kb) implies

∀p1 ∃p∀q ∃q1 ∃C, t0 : Ψ1

(
(8/t)

1
q1−p1

)
< (q + 1)Φ((Ct)

−1
q−Qp ) + q + 3, t > t0.

The right-hand side of the inequality can be replaced by 2qΦ(·) as Φ ↑ ∞ when its argument goes

to 0. We now denote 1
2qΨ1((8/t)

1
q1−p1 ) by x.

Then 8/t = (−ψ′(2qx))q1−p1 and x < Φ
(

1
C (−ψ′(2qx))M

)
with M = q1−p1

q−Qp and some constant C.
This clearly implies (3).

We have thus proved the following necessary geometric condition of isomorphism:

Theorem 2. If the spaces E (Ka) and E (Kb) are isomorphic then the sequences (an) and (bn) are
equivalent.

Question. Is the equivalence of sparse sequences, provided all regularity properties, a sufficient
condition for isomorphism between the corresponding spaces as well?

5. Examples of Nonisomorphic Spaces

We may now apply Proposition 2 in order to describe the diametral dimension Γ(E (Ka)) for the
compact set Ka satisfying all conditions of the previous section.

Proposition 6.
{
(γn) : ∀p ∃q : γnϕ

q−Qp( n
2q ) → 0 as n ↑ ∞

}
⊂ Γ(E (Ka)) ⊂ {(γn) : ∀p∃q :

γn(−ϕ′(n+ 2))q−p → 0 as n ↑ ∞}.
Let us prove the first inclusion since the arguments are the same for the latter. If ∀p∃q : ∀C ∃n0 :

Cγnϕ
q−Qp( n

2q ) < 1, n ≥ n0, then n
2q > Φ

(
(Cγn)−

1
q−Qp

)
and n > (q + 1)

[
Φ

(
(Cγn)−

1
q−Qp

)
+ 1

]
>

β
(Cγn

8 , Up, Uq

)
, by (4). Therefore, by Proposition 2, (γn) ∈ Γ(E (Ka)).

The condition (1) has the form

∃Q ≥ 1, t0 : ϕQ(t) ≤ −ϕ′(t), t > t0.

If, in addition, the function ϕ satisfies the following restriction

∃C ≥ 1, t1 : ϕC(t) ≤ ϕ(2t), t > t1;
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then, as it is easy to check,

Γ(E (Ka)) = {(γn) : ∃M : γn · ϕM (n) → 0 as n ↑ ∞}.

Therefore, the space of Whitney jets on the sequence (n−1) has the same diametral dimension as the
space s of rapidly decreasing sequences, whereas in the case an = e−n we obtain the class Γ likewise in
the case of the space of entire functions.

We can now present the example of continuum-many pairwise nonisomorphic spaces E (Kaλ
). The

family of functions ϕλ(t) = exp(−lnλ(t)), t ≥ 1, with the parameter λ ≥ 1 (cp. [12]) gives the desired
example. Indeed, the corresponding sequence is sparse, the function ϕλ satisfies all required conditions,
and the classes Γ(E (Kaλ

)) are different for distinct values of the parameter.

6. The Case of Thick Sequences

From the family of nonsparse sequences we distinguish the sequences (we call them thick) such that
for every Q and large enough n we have

an − an+1 ≤ aQ
n .

We assume the additional condition

∃M,n1 : an − an+1 > 1/nM for n > n1 (5)

which is satisfied for typical thick sequences.
Given Fréchet spaces X and Y , we say that the functions β(X) and β(Y ) have the same asymptotic

behavior (β(X) ∼ β(Y )) if we can estimate one function by the other with the appropriate arrangement
of the quantifiers as in Proposition 3.

Theorem 3. Let a thick convex sequence a = (an) satisfy (5) and X = E (Ka). Then β(X) ∼ β(s).

Proof. For the space s we have dn(Uq, Up) = (n+1)p−q (e.g., see [13, Lemma 2]) and β(s)(t, Vp, Vq) ∼
t

1
q−p . Since β(s) is maximal among all nuclear Fréchet spaces, we naturally obtain the upper bound

for β(X):
∀p ∀ε ∃q ∃C : β(X)(t, Up, Uq) < C · tε.

On the other hand, arguing as in Theorem 1, we infer the bound

β(X)(t, Up, Uq) ≥ N2

with the same value N2 as above. By convexity of the sequence (an) we have aN2+1 − aN2+2 <
(

8
t

) 1
q−p .

Applying (5) gives
aN2+1 − aN2+2 > (2N2)−M .

Therefore,

N2 > Ct
1

M(q−p)

for some constant C, which implies the desired conclusion.

The condition (5) does not follow from the definition of a thick sequence. For example, we can
recurrently construct the sequence of subscripts (nk) such that ank

= 1
log nk

and an − an+1 = n−k
k for

nk ≤ n < nk+1. We guess that the behavior of β for the corresponding space E (Ka) is highly irregular.
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